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ELECTRON BEAM PROPAGATION THROUGH A MAGNETIC

WIGGLER WITH RANDOM FIELD ERRORS

I. Introduction

Electron beam propagation through magnetic wigglers has become a topic of recent
concern primarily due to its relevance to free electron lasers (FELs). Interest in FELs
has become widespread' since the FEL offers both a tunable source of radiation from the
microwave to the subvisible range as well as the capability for producing intense power
levels. The quest for FELs to serve as high power single pass amplifiers has led to the
design of long wigglers extending for hundreds of wiggler wavelengths. The design and
analysis of such FELs typically assumes the wiggler field to be adequately described by its
ideal sinusoidal form. However, the intrinsic impreeisions which occur ill the fabri-ition
and assembly of wiggler magnets result in a magnetic field which deviates from the ideal
sinusoidal form by some small error, 6B. Typical state-of-the-art wiggler construction2

results in intrinsic field errors of bB/B,, > 0.1%, where B,, is the peak ideal wiggler mag-
netic field on axis. These intrinsic field errors lead to detrimental effects which generally
increase with the axial length of the wiggler.3 -  Hence, for long wigglers the detrimental

effects of field errors become exceedingly important. These effects, if left uncorrected, may
destroy the FEL interaction and lead to a loss in radiation gain.

Physically, the detrimental effects of wiggler errors may be understood as follows. As
the electron beam propagates through the wiggler in the axial z--direction, the electrons
encounter a series of errors in the transverse magnetic field bBj., which are assumed to be
random. The beam electrons then experience a series of random transverse (v, x SBL)
forces, where v: - c is the axial velocity of a relativistic electron. This series of random
forces results in a random walk of the electron beam centroid, causing the centroid to
deviate from the wiggler axis by some amount bx(z). Statistically speaking (as will be
discussed below), the rms magnitude of transverse beam displacement bx(:) generally
increases as a function of the axial propagation distance :. In an FEL, the magnitude
of the beam displacement bz(z) may become large enough to prohibit optical guiding7 of
the radiation which decouples the electron beam from the radiation beam (the electron
beam centroid no longer overlaps the radiation beam centroid), thus destroying the FEL
interaction; or worse yet, the electron beam may deviate sufficiently far off axis so as to
hit the wall of the wiggler magnets. Ideally, to avoid such detrimental effects, it may be
desirable to keep the magnitude of the beam walk off less than the radius rb of the electron

beam, I6bj < rb.

Not only do the wiggler field errors cause the electron beam to walk off axis, the

Mamncipt approved Jum 16, 199.
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errors also cause the parallel energy of the electron beam to deviate from its ideal value

(the value in the absence of field errors).6 As the field errors induce a transverse beam

motion (and a transverse energy) through the beam walk off, the errors siibseqiiently

alter the parallel energy of the beam, since static magnetic fields do not alter the total

beam energy. Statistically, the variance of the deviation in the parallel beam energy 61y11(:)

generally increases as the propagation distance z increases. Here, -y = (I-vz,/c 2 ) -/2 is the

relativistic factor associated with the axial electron motion. In an FEL, the parallel energy

deviation &71(z) may increase in magnitude to the point where the wave-particle resonjance

is no longer maintained, thus destroying the FEL interaction and reducing the overall FEL

gain. In order for the electrons to maintain their resonance with the radiation field, it is

necessary for the electron parallel energy deviation to be small compared to the intrinsic

power efficiency ri for FELs in the low or high gain regimes," 16'7fI/71101 < 7, where 7110 is

the electron parallel energy in the absence of field errors. In the trapped particle regime,

the parallel energy deviation must be small compared to the ponderomotive potential

created by fhe FEL radiation:9 Jb7it/7floI < IeO,/(-tmoc2 ), where op is the ponderomotive

potential and m0 is the electron rest mass.

The effects of random field errors in magnetic undulators were first analyzed by

Kincaid. In his work, Kincaid was concerned with how these errors affected the spon-

taneous radiation spectrum resulting from the passage of an electron beam through the

undulator. Kincaid studied the transverse orbit of a single electron in the I-D limit, ne-

glecting the effects of transverse weak focusing. Kincaid also assumed a specific model

for the random errors, in which the axial dependence of the field error associated with

a given pole pair was assumed to be a sinusoid extending over half an undulator period

(see the discussion in Sec. VI). Elliott and McVey also analyzed the effects of field errors

in undulators and wigglers.' Again, they were primarily concerned with how these errors

affected the spontaneous radiation spectrum (for undulators) or the radiation gain (for

wigglers). Elliott and McVey presented theoretical calculations of the transverse orbit of a

single electron including the effects of transverse focusing based on a model which assumed

that the electrons received discrete independent velocity kicks from field errors at each pole

pair. These theoretical calculations were then supported by the results of an FEL simu-

lation code in which the electron dynamic equations were averaged over a wiggler period.

Shay and Scharlemann used a similar FEL simulation code to study the effects of field

errors on FEL performance.' The random walk of the beam including 3-D focusing effects

was briefly discussed and plots showing how field errors reduce FEL output power were

presented. The works of Kincaid, Elliott and McVey as well as Shay and Scharlemann all
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discussed how the detrimental effects of field errors could be reduced by periodic external
steering of the electron beam. None of these works, lowever, directly calculated the effects
of random fieid errors on the parallel energy of the electrons, nor did I ley lirforin particle

simulations of beam transport in which the electrons are modeled by the full relativistic

Lorentz equations (as opposed to a spatial averaged version).

In the following sections, a comprehensive theoretical and numerical analysis is pre-
sented determining the effects of random wiggler field errors on relativistic electron beam

propagation. Specifically, how random field errors affect the transverse position of the elec-
tron beam centroid as well as the parallel electron beam energy will be determined. This
study concerns the effects of random, homogeneous errors in the transverse magnetic field
bB±(z) which statistically have zero mean, a finite variance and a finite autocorrelation

distance. It is assumed that the field errors bSB±(z) are a function only of the propagation

distance z, which is a valid approximation provided that the transverse variations in the
field errors are small over the transverse spatial extent of the electron beam. However,
3-D effects are retained in the beam dynamics and in the form for the ideal wiggler field
which enables the effects of transverse weak focusing to be studied. In this analysis, it

is assumed that there exists an ensemble of wiggler magnets which contain statistically

identical magnetic fields. Expressions are derived for an electron beam quantity Q for
a particular wiggler realization (a particular member of the ensemble) as well as for the

appropriate statistical averages (denoted by angular brackets) over the members of the en-
semble, such as the mean (Q) and variance squared (Q2 ) - (Q) 2 . The theoretical analysis

presented below assumes that the relativistic electron beam dynamics may be adequately

described by the dynamics of a single electron located at the beam centroid. This assump-

tion is then supported by performing full scale nonlinear 3-D simula- ions10 of electron

beam propagation including finite emittance and space charge effects.

The remainder of this paper is organized as follows. Section II of this pa.per presents
an analytical treatment of the basic properties of general random field errors. In Sec.
III, an analytic theory is developed for electron motion in a helical wiggler with general
random errors in the 1-D limit. This theory is generalized to include the 3-D effects of

transverse weak focusing in Sec. IV. In Sec. V, analytical results are presented for electron

propagation through planar wigglers for the case of flat pole faces as well as for the case of

parabolic pole faces. Section VI presents the results of the beam propagation simulation

code. This paper then concludes with a summary and discussion of the results in Sec. VII.
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II. Random Field Error Statistics

In an actual wiggler magnet, the magnetic field will deviate from the ideal theoretical

sinusoidal form, B,., by some small amount bB. Hence, the total magnetic field will be

denoted by

B3(z,y, z) = B,(x, y,z) + B.(z)e, + 6B(z)e,. (1)

Throughout the following, the dependence of bB on the transverse coordinates will be

neglected. This assumes that (bB(rm.z,z) - 6B(O,z)) 2 /IB(O, z)' < 1, where rma is the

maximum transverse displacement of the electron beam from the axis.

In the following analysis, it is assumed that there exists an ensemble of wiggler magnets

in which the associated field errors 6B exhibit known statistical properties. Specifically,

it is assumed that (6B(z)) = 0 and that the correlation functions for the field errors,

(6B(:)bB(z + Az)), are known. Furthermore, it is assumed that the random field errors

are homogeneous, that is, the correlation functions (,SB(Z)bB(z + Az)) are only a function

of Az. These correlation functions are assumed to exhibit the following properties:

(SB.(z)SB.(z + Az)) :f (5B), for Az = 0S0, for IAzI > z ,

=-(b 2,for A z = 0 (2)(bB(z)6B,(z + Az)) - 0,(B for z> z,

(B 2 (z)bB,(z + Az)) 0.

In the above expressions, (6B2_) and (bB2) are assumed to be constants and represent the

mean-squared field errors of the x and y components of the magnetic field. Also, z., and

zcv are the autocorrelation distances for the errors SBf(z) and bBy(z), respectively, which

are defined by the expressions

SdAz (bB,(z)bB(z + Az)) =z, (bB2)
(3)] dAz (bB,(z)(SB,(z + Az)) zcy (bSB2).

Physically, zc is the distance over which the field error bB(z) remains coherent (see Fig.

1). Typically, one expects zc = N,./2, where A,, is the wavelength of the wiggler field.

This implies that the scale length for the field error associated with a given magnet pole

is approximately equal to the width of that pole. The last expression in Eq. (2) indicates

that the z and y components of the field errors are assumed to be uncorrelated.
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Another quantity of interest is the vector potential 6.A,.(:) associated with the field

error 6B,,,(:). Defining the normalized vector potentials ba = ebA/(moc2 ) and a,.

cB,,,/(k,.rnoc2 ), where k, = 21r/A is the wiggler wavenumnler, then

= a-,-,fo' and a,,.k, , dz'B: (:'). (4)BUa, "- , dzU,:' JnO:u

It then follows that the correlation of the normalized vector potential errors is given by 1 . 12

(-a.(zj)a.,(z2)) = a,k,, dz' , dz" (bBE(z')bB , (z"))

a2, k2  f' [00
~-. UU, dz' dAz (bB,(z')bB,(-' + A:)) I + 0 (5)

=2Dxzr, D, I a 2( 2)k2Z2 w B2)

provided I:,-I > zn,, where Zm is the smaller of z, and Z2. Throughout the following, terms

of order O(z:/z) will be neglected. Similarly, for the y-component of the normalized vector

potential errors, one has

(ba,(zj)ba,(z 2 )) = 2 Dyzm, D. = a ' k2 zCM, (6)

provided iz, > zc... The above expressions are used below to calculate the statistical

behavior of the random walk and parallel energy deviation of the electrons.

5



III. Propagation Without Transverse Focusing

As a first step in detemining how field errors effect electron beani propagation through

a magnetic wiggler, the transverse gradients associated with the wiggler field will be ne-

glected. Such an approximation is valid provided the displacement of the electron beani off

axis is much smaller than a wiggler wavelength. This amounts to neglecting the transverse

focusing force the electron beam would normally feel as it moves off axis into a region of

stronger wiggler strength. In the absence of field errors, this transverse gradient in the
wiggler field gives rise to betatron oscillations.9" 3 As is shown in Sec. IV, neglecting the
transverse focusing forces is valid provided (2zk,) 2 << 1, where k6 = a,.k,,/(v '2) is the

betatron wavenumber.

The ideal wiggler field is assumed to be helical, and in the I-D limit, is given by

B,(z) = B, (cos kz e. + sin k,,,: e.),

A,.(z) = - (cosk,: e, + sinkz ), (7)

where A,, is the vector potential associated with B,. Generalization of the results below

to the case of a planar wiggler is straightforward and is discussed in Sec. V.

Neglecting the transverse gradients, the problem becomes 1-D, and the motion (,f an

electron through the magnetic wiggler is completely described by conservation of perpen-

dicular canonical momentum and conservation of energy,

E
pj. = -A-L and y = "YlI)Y-L, (8)

c

where p. = -ymv_ and -yL = (1 + p/m 2 c 2 )'/ 2 . Note that -y is a constant of the motion

since there is no applied electric field. Writing vL = v,,, + bv±, where v, = ca,/'y is

the electron wiggle motion in the ideal wiggler field B,,, then the deviation 6v; from this

ideal motion is given by 6v-t = (c/-y)Sa_.. Notice that (6v.L) = 0 and that the mean-square

perpendicular velocity deviation is given by

C2

(6t,2= C2DL:, for 1:1 > ,(9)

where D.L = D, + D.. Hence, the mean-square perpendicular velocity of the electrons

increases linearly with the distance traveled through the wiggler due to the presence of

field errors.

6



A inore in|port ant quantity, however, is the tranisverse displaceileil of Ilie election

orbit off axis. This is obtained from the perpendicular electron velocity by the relation

VL = v:dx:/d-. Again, writing xj = x,. 4 6xL, where x,, is the elect ro transverse

wiggle orbit in the ideal wiggler field B,, then the transverse orbit deviation is given by

6xL d _L (10)

where the approximation vz = c has been inade. Again, (bx 1 ) = 0, and the mean-square

transverse displacement is given by

(bX) =1 2 Dj 3, for jzj > zc1

The above equation indicates that the rmis value of the transverse displacement due to

field errors increases as z:/2. This expression agrees with the results of Kincaid 3 in which

the random walk in 1-D was calculated for a specific field error model (see Sec. VI).

The results for the mean-square values of the electron's perpendicular velocity and

orbit given in Eqs. (9) and (11) may be understood through the following physical ar-

guments. The x-component of the equation of motion for the electron in the combined

magnetic field is given by

7mo'dV, = eB,,, sink, z + ebBy. (12)

The first term on the right of the above equation is the force due to the ideal wiggler field
whereas the second term is the random force due to the field errors. Hence, the error bBY
produces random velocity kicks bv=. Such a process is described statistically as "velocity-

space diffusion" and one expects the mean-square velocity to scale as (6V2) - 2Dz. where
D, is the diffusion coefficient. Similarly, x = f dtbv: and, hence, &x is a "time-integrated

diffusion process", which exhibits the generic form (2) - (2/3)D.,?. One should keep in
mind that the above relations only hold for long "times", that is, for (z/zc) 2 >> 1, where
ZC is the autocorrelation distance for the random force 6BY.

Another quantity which is of interest is the parallel energy of the electrons -yeI. The
statistical behavior of y71 is calculated from the relation "y11 = 'y/'yL, where -y is a constant

of the motion and -L = (1 + -)2182) /2. Here 13 = v/c is the normalized electron velocity.
Using the above results, one can write O3± = 0L.0 + bO." where /3_0 is the normalized
perpendicular velocity in the absence of field errors. Defining L0 = t +2/3.0)1/2 and

1110 = ")/'Y±o, then the parallel electron energy is given by

-III = 'YI0 1 + 1 0 k213_0 " )6 3 i + 6 2)/2 (13)

7



For the present case of electron propagation in tile 1-D limill, a';- and b/3: =

baL/'). The statistical properties of the parallel energy are easily calculaled by expanding

tile expressions for -yi, anld to inclide all terms of order A 2 . qPrifically, i he at

(-'y1) and the square of the variance - (-yll)2 of the parallel energy are given by the

expressions

:7,V[(i- - (D,. + Dv)- - (D. - Dy)cos2k,,, , (14a)
7110 4 022

(-Y2) -(_,)2 I+ =1 in---- [(D, + D,) + (D, - D,)cos2ku,,z, (14b)

where -ve = (1 au, In the limit Dz = Dy ((SB-zcz = (B )zc ), the above

expressions reduce to

(7i1) - i11o ( - a;,/2) / B 2 \ - (15a)

a!( + \ . BU,, / u' u'c-

-~(,v) k(y. (l5b)

"Y (1 + 2 a,)2 B 2 , -

As before, the above formulas apply provided (z/z,) 2 >> 1. Notice that (-Y) - 7,tjo may

either be positive or negative, depending on whether or not a w/2 > 1. This indicates that it

is possible for the field errors to perturb the electrons in such a way that the perpendicular

energy in the ideal wiggle motion of the electrons is converted into parallel energy. Also,

notice that the variance of the parallel energy deviation increases as Vi .

8



IV. Propagation with Transverse Focusing

Transverse focusing of an electron beam results from the transverse gradients in the

wiggler magnetic fields. Specifically, as an electron beam moves off axis it also moves

into a region of higher magnetic field which tends to focus the electron beam back toward

the axis. This weak focusing, in the absence of field errors, produces beam oscillations

at the betatron 9,1 wavelength \, = v'2"r,/au. Hence, in the presence of field errors,

one expects that as the electron beam begins to random walk off axis, the weak focusing

forces tend to steer the beam back towards the axis, thus, diminishing the magnitude of

the transverse random walk of the beam centroid. -

To study the transverse motion of an electron beam in the presence of weak focusing,

a helical wiggler field is assumed with a normalized vector potential given by the following

model equations:

a, = a,(+±k , 2 2/2) cos k. _-+a,(z),(W (16)

= a( + k+2 /2) coskwz + ba,(z),

where it is assumed k,X2 << 1 and k.y << 1. This model gives an adequate approxi-

mation to a realizable helical wiggler field near the axis. 1 4

The electron motion is described by the relativistic Lorentz equation, which may be

written in the following form:

c V (17)

The above transverse equations of motion will be solved in a parameter regime assuming

the following approximations. Physically, one expects the perpendicular electron motion

to he dominated by a fast wiggle motion v_.f and a slower random motion bv.L resulting

from the finite field errors. Hence, it will be assumed 61.2/v2 << 1. Also, cases of

physic,,: .. terest occur when the transverse random walk bx_± of the electrons becomes

much .r -er than the amplitude of the fast. wiggle motion x'±f. Hence, it. will be assumed

that ,2 " << 1. As will be shown below, these two inequalities imply that

<2 << 1. (18)

9



In actuality, the results derived below describing the random motion of the electrons are

somewhat more general than the above inequalities implY. However, such a derivation

becomes too detailed to be presented in this text. Instead. ilie above ineqiialities will be

assumed, which corresponds to the region of physical interest., which greatly simplifies the

derivation.

The x-component of the electron motion is calculated by letting v -= Vz.f + 6 1v., where

V'f = (ca.,/"y)(1 + k' y 2/2)cos k,,,z is the fast wiggle oscillation in the local wiggler field.

Assuming bv!_/v2 << 1 and z'/16x2 << 1, where dbx/dt = Av, and dxf/dt = vf, gives
d 2  1 d

d- x + k2z (1 -cos 2k,) - -- a., (19)dz_ 6 - dz

where ko = a,,k,/(V2/2-y) is the betatron wavenumber. In deriving the above equation, a

change of variables from the independent variable t to the independent variable z was made
2 IX

along with d/dt = vd/dz !. cd/dz. Letting 6: = 6x. + bxf and assuming bx//:f << 1,

gives bxf -(k6/2k, )26x. cos 2k,z and

d2 _b + k ° -- "- k --b .(20a)

Clearly, bxf represents a small correction to 6: on the fast time scale d/dz -. 2kw which

shall be neglected. In the above equation for 6:., the second term on the left represents

the weak focusing force from the transverse gradient of the wiggler field and the term on

the right represents the random force from the finite field error.

Similarly, the y-component of the motion can be calculated by letting v. = tV' + bl'y,

where vyf = (ca, y/)(1 + k 2 2 /2) sin kz, and assuming 6v2/v'! << 1 and y /y, << 1.

Setting 6y = 6y, + 6yf gives by/f = (kt /2k,4)6,y, cos 2kwz and

d2-by. +k(206

Solving for the random orbits 6:. and by. is straightforward and one finds

(-aw w dB' (szi(')
by.(z) = ..,d sin ko(:'- : ) B , ,)

Likewise, the random perpendicular velocities 613., = v./c and b13° = 65v,/c are given
by b y ig r ( ) = u k u ' -- -- d ' co s ko ) b B ,,,:'

1 1B BU, (22)
6 !i.(z) = - . , d:' cos ko (: ) B ,

10



Physically, b-, and by, represent diffusing betatron orbits which are the result of random

velocity kicks from the finite field errors in the presence of weak focusing forces.

In order to calculate the mean-square values for the transverse electron orbits, it is

necessary to evaluate the following expression:

jo dz' j dz" sin k# (z' - z) sin kp (z" - z) (6B(z')6B(z"))

fdz' dAzI[coskpAz - coskp(2:'-2z + Az)]

x (bB(z')bB(z' + Az)) [+ ()](23a)

f dz'I [I - cos 2k,6 (z' - )](bB 2 ) Z' [I + 0 ( 'C) + (,z)

2= ) ~ snk' (bB 2 +z [±0 (:;c) + 0 (k, zc)]
2 \ 2ka ]

where (../Z)2 << 1 and (k#zc) 2 << 1 has been assumed. In evaluating'the above expres-

sions, it has been assumed that the correlation function (bB(:)bB(z + Az)) is independent

of z and becomes zero for lAzi > z., as is discussed in Sec. II. Similarly, one can show

j dz' j dz" cos kp (z' - z) cos k# (z" - z) (6B(z')bB(z")) (23b)

I (z + (6B2 ). 1 + o0(L ) + 0(kz) ]2 2k,6 I

These expressions are then used to calculate xhe statistical averages of the transverse orbits

and, in doing so, terms of order O(z,/z) and 0(k p zc) will be neglected.

Statistically averaging over the wiggler ensemble gives the following expressions for
the mean-square quantities:

( a. 2k 1 ) 2 ( ! sn2kLI(6zl) - 7wk0  Bv,/ 2 sin2koz) (24a)

(by")\ -k / 2 IB\ 2 ( sin2k) , (24b)

-yk0e B 2k0 66 B 2, Z Y si~ koz(25a)(63 . -2k Z] 2ka .

(k ")2K :L ( sin 2ko:

=, Z Z +  .--.1(25b)

WB 12,



Notice that the above expressions reduce to the corresponding I-D expressions in tie

limit. (2kb: )2 <.< 1. The above expressions indicate that, in the large : limit, (0T2 )1/2

(by2)/ 2 , :1/2 (as opposed to :3/2 in the i-D limit). This arge,-s with the rsvilts of Elliott

and McVey4 and of Shay and Scharlemnann.' Hence, weak focusing significantly reduces

the magnitude of the transverse spatial random walk of the beam centroid. Furthermore,

notice that (&z)1/2 _ (b:)1/2 . 1/k# and, hence, additional external focusing (which

increases the effective value of kI) subsequently reduces the transverse displacement of the

beam centroid. Notice, however, that (b#2.)1 / 2 _ (6#2.)1/2 ~ 1 /2, as is the case in the

1-D limit. Hence, in the large z limit, weak focusing only reduces the value of (,b#2°)l 2

and ( by a factor of root two as compared to the 1-D values.

It is also of interest to determine how the finite field errors affect the parallel energy

of the electrons in the presence of weak focusing. An expression for the parallel energy "fii

is easily obtained through conservation of energy y11 = 7/7t. provided the perpendicular

motion is known, 1 + -y,2/ . Using the above results, one has 6_L = Iij. + PL.,,

where PLf is the fast wiggle oscillation in the local wiggler field and b/3j. is the random

component of the orbit due to finite field errors. It is then straightforward to calculate the

various statistical moments of -yg1, such as the mean (3yU) and the square of the variance

( ) - ( This is done by expanding the corresponding expressions for "'ll and "Y2 to

second order in ,BIB,,. One finds

(7) -110 1ID r + U2 3 i

+ (DF - Did) 1 + 5 z _ _2) sin k z Cos2uatz (26a)

([, () 4 2 + 2k )

"l = 2,, [(D + -D,) + (Dz - D)cos2k z+ k (26b)
For the case D,= D., the above equations reduce to

(-Y11) -7-110 _ ( a ,k ) 2 /6b,2\ ) r{: + aZ )z+ 3a 2 , sin 2kc z 1(27a)

(7) (ii), ak, )2 a',) Z (z + sin 2k6z) (27b)
2 1 +a 2  B2 22kjg

Notice that the above expressions reduce to the 1-D expressions in the limit (2kj3-)2 << 1.

Furthermore, in the large z limit, both (7,l) - z and (1-') - (-rli)2 - z, as was the case in

the 1-D limit. For the 3-D expressions in the large z linit, however, (7y1) - Yl10 < 0 and

(ql) - (-yll) has been reduced by a factor of two as compared to the 1-D value.
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V. Propagation Through Planar Wigglers

The results presented above are for wigglers with helical fields. It. is straightforward
to generalize these results to planar wigglers with linearly polarized fields. The electron
motion is anialyzed using the methods presented in the previous sections, hence, the details
of such calculations will not be repeated. Below, results are presented for planar wigglers
of two types: i) planar wigglers with flat pole faces and ii) planar wigglers with parabolic
pole faces.

i) Flat pole faces. Consider a planar wiggler with flat pole faces with a magnetic field
described by the normalized vector potential

a = a1, cosh ktycos k,,ze,. + aZ(z)eE + a,(z)e,. (28)

The above vector potential gives a magnetic field primarily in the y--direction which exhibits
transverse gradients also in the y-direction. Hence, intuition indicates that the electrons
will experience wiggle oscillations in the x-direction and weak focusing in the y-direction.

The x-component of the electron motion consists of fast wiggle oscillations in the local
wiggler field plus random velocity kicks in the absence of weak focusing: P = /.! + 6j3.,
where /6f = (a,0/7)(1 + k' y2/2) cos k,,z and ,6 = a/-y. Hence, the random part of the

orbit bz is described by

a.. Z Z B~ 1 b2 2 (6B 2  Z3

--(z) = dz' d" anz) and (2 k (29)

The y-component of the electron motion consists of a random orbit by including the effects
of weak focusing. One finds by, = 6y, + byf , where by1 = (k2/4k)6y. cos2kz is a small

correction to 6y which shall be neglected. The random orbit 6y, is described by
awkw bB .. , S(z'),

()=- . az sin k# (z' - z) (30)
2by/2) = / :c, sin2ke:<3

ak, )2 L, 2 2 - 21c0

It is also straightforward to calculate how the field errors affect the parallel energy of
the electrons. One finds, to second order in I6B/B, that the mean and the square of the
variance of V'j1 are given by

13



-Vf (airku. 6B )1: [ + I cos ,kuz ( Z siyi 2k1:)
(!_k_~~ ) 2 I LI __ Ill I I i (3b

B2 2 o

where -yo = (IaU, cos2 k,z) 1 / 2 . Notice that the above expressions have not been averaged

over a wiggler period.

Hence, for fiat pole faces, in the x--direction in which there are no focusing forces, the

rms value for the orbit displacement scales as -3/2. In the y-direction, the focusing forces

inhibit the orbit walk off which then scales as :112 in the large : limit. Notice that both

the mean and the square of the variance of the parallel energy scale as z, as was true for

the case of a helical wiggler, with or without transverse focusing.

ii) Parabolic pole faces. Consider a planar wiggler with parabolic pole faces where the

normalized vector potential is given by

a, = aw cosh ( kw xIV / - cosh cos k z ± ba ,
\ / \ /(32)

a1 = -a sinh ( k, /iV) sinh ( Cos kwz + ba,(:).

Notice that this is for the special case of equal focusing in the x- and y--directions; that is,

-2 = k2 where k2 + kI 2 P. The above vector potential gives a magnetic field primarily in

the y-direction which exhibits transverse gradients in both the x- and y--directions. This

indicates that the electrons will experience wiggle oscillations in the x-direction and the

random transverse orbits will be modified to include weak focusing in both the x- and

y-directions.

The x-component of the electron motion consists of fast wiggle oscillations in the local

wiggler field plus random velocity kicks in the presence of weak focusing: 13, = /3, + 613,,

where P. f - (a./-)(1 + k r2/4 + k2,y 2/4)cosk,:. The random conponent of the orbit

bx can be written as 6x = br. + bxf, where 6z! is a small correction to the random orbit

h (k 2/8k,,,)6. cos 2k,-, and where bx, is described by

14



1- dz'si,,n ('-z) ,

(Lz ) (a )u 2 ~ ( v z siB? (33)

Similarly, the y-component of tile motion is described by 81 = /_/f + 6/3k, where P! _

-(./2-y)k 2xycosk,z. The random component of the orbit by can be written as by =

by. + hyf , where byf1 is a small correction to the random orbit 6yf = (k2 /8k2 )by, cos 2kwz,
and where by, is described by

byo(z) = /d' 2 (z' z) b B, (z')
f# 10 V2- ____

(b.)=( w.,)2 / 6B ) sin V'2Icz " ~(34)

Notice that the above expressions for the random orbits bz, and by, are identical to those
expressions for a helical wiggler with transverse focusing except that k0 now must be
replaced by kO/IV.

It is also straightforward to calculate how the field errors effect the parallel energy of
the electrons in a planar wiggler with parabolic pole faces. One finds, to second order in

16B/B.1, that the mean and the square of the variance of -y1 are given by

- -Y110 awk. ZC° + \ / ) zC)[z + I Cos 2k ,z!
sin v/kaz'\] -/(LB \3:€, (1- )( sin ifkaz (5

710v 2J B~2 B2o 2~Vk i
sin2koz-)]-\'B' l'- -- + }(35a)

(.y2) ( _ ( aayk° B2_ V 2k

_f12.~, 2 -y.2 z (356)

where 7yo = (1 + a2. cos 2 kz)/ 2 .

Hence, for parabolic pole faces, transverse weak focusing exists in both the x- and
y-directions and the rms value of the orbit displacement in both transverse directions
scales as zl / 2 (in the large z limit). Notice that the mean and square of the variance of
the parallel energy scale as :, as is the case for all the wigglers examined.
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VI. Numerical Simulations

In order to verify the above analytical theory and results, a numerical code was

developed' 0 to perform full scale simulations of electron beam transport. through mag-
netic wigglers. This code is a fully 3-D particle simulation which includes finite beam

enittance and space darge effects. This code simulates beam transport in either helical

or planar wiggler configurations, with or without transverse weak focusing, and has the
capabilities of including finite wiggler field errors. Once the magnetic field configuration is
specified, electron motion is simulated by solving the relativistic Lorentz force equation.

As an example, electron beam transport was studied in a helical wiggler with finite
field errors. The magnetic field was modeled by the following expressions:

Br= Bw +o ,, ;,z( 2 c oskkz+xzsn+. ) + bB,,(:), (36am)

By= B., + sinkz + L (:Ycosk z + sinkz) + 5B,(z), (36b)

BZ= B~k,, + k .. (y cos kwz - x sink,,.z) , (36c)

where it has been assumed k 2r 2  k2 (X2 + y2) << 1.

The functional form of the field errors bB(z) was chosen as follows. It is assumed that
the field error bB,,(z,,) at the center (z = z-) of the nth pair of magnet poles is a random

quantity uncorrelated with the field error 6B,(z,) associated with the center of the M th

pair of poles, where m n. Furthermore, in order to preserve the continuity of bB(:) as
a function of z, it is assumed that the field error bB,(z) associated with the n 1h pole pair

extends over the region z, - A,/4 < z < z, + A./4, such that I6B,,(z)l is maximum at

z = z. and is zero at z = z, ± ./4. For simplicity, the following functional forms are
chosen for the field errors of the nth pole pairs in the x- and y-directions:

&B ,,e,, cos k z, if Iz - z, I < A,,'/ 4; (37a)

,- 0, otherwise,

( AB ',Y sin ku ,, if 1z- z-, < A,,/4;B~,(z) j0, otherwise. (376)

Here, AB, and AB, are the maximum field errors for the wiggler in the x- and y-

directions; and the centers of the pole pairs in the x- and y-directions, z,, and Z,,,
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are given by z,., = (n - 1)\,./2 and z., = (n- 1/2)/2. Also, c,,, (or , is a ran-

dom number between -1 and 1 which is constant over the region 1z - K-< A,./4 (or

12 - ZnVI < A,,/4) and is uncorrelated with the value of f,., (or f,) for 7 4 7,. Fiirther-

more, it is assumed that the statistical distributions for f,=, (or Ct,) are identical for each

pole pair (all n). The distribution for c,, is chosen to be uniform from -1 to 1 such that

(..) = (c ,,) = 1/3, although any random distribution with zero mean and finite variance

would be equally satisfactory. This model for the field errors £B. is essentially identical to

that used by Kincaid,3 only Kincaid assumed the random coefficients En, to be Gaussian

distributed. A schematic of this field error model is shown in Fig. 2.

To compare the above numerical model for bB(z) to the analytical model which as-
sumes tB(z) to be a random, homogeneous variable with autocorrelation length :Z, it
is necessary to calculate the correlatiou function (bB(z)LB(z + Az)) for the numerical

model. Recall that the analytical theory assumed 6B(z) to be homogeneous such that

(6B(z)6B(: + Az)) is a function only of Az. For the numerical modal, however, this is
not the case since bB(:) was chosen to have a cos k,,z (or sin kz) dependence over a given
pole pair. Hence, a comparison of the numerical model with the analytic theory requires
that the expression for the numerical model of (6B(z)6B(z + Az)) be spatially averaged

over a wiggler period. Doing this, one finds for the numerical model,3

(bB (z-)bB.(z + Az)) = I AB. (c.2) [1~ 21i,) cosk., A z2 [ ( \. )(38)
1 ]A

+ -sink,.lAzj for lAzI < (38

and zero otherwise (along with the corresponding expression for the field error correlation

in the y-direction). Using the definition for the autocorrelation length Zc given in Sec. II,

one identifies that for the numerical model

(6.02) = 1 2) (4) = -A~ (39a)

(6. ABF = ( A) m (39b)
and

zca = -c i A= . (39c)

In the above expressions for (bB2 ), the factors of 1/2 arise from the spatial average of

cos 2 kz and sin 2 k,:. Hence, the numerical model gives an rms field error of (bB2 )1/2 =
ABy/V6, where AB is the maximum field error of the wiggler ensemble, and an autocor-
relation length equal to 4Af/r2 .
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The above model for the wiggler errors was used ini the numerical code to simulate

electron beam propagation in a helical wiggler. A particular realization of a wiggler was

obtained for a given single set of random field error parameters f,, and C' .1 For sulch

an individual realization, various properties of the electron beam were calculated such

as the transverse displacement of the beam centroid and the variation of the electron

beam parallel energy. These beam quantities were obtained by averaging the appropriate

quantities for the individual electrons over the distribution of electrons within the beam.

Ensemble averages of a beam quantity were then obtained by averaging the beam quantity

over 40 individual wiggler realizations (40 sets of 800 distinct random field error parameters

t,, and £-v)" The runs described below are for a helical wiggler of length L = 40 m, with

B, = 4.3 kG, A, = 5.0 cm, and (B 2 )1 /2 /B,, = 0.3%; and for an electron beam of energy

-y = 270, with radius ri, = 0.08 cm and a normalized emittance of 11.3 mrad-cm, which

matches the acceptance of the transport channel. These parameters give a,, = 2 and

ko = 9.5 m.

A typical transverse orbit bx(z) occurring in a single wiggler realization is shown for a

case without transverse focusing in Fig. 3 and for a case with transverse focusing in Fig. 4.

Figure 3 shows a large 1-D orbit displacement of 6.7 cm, whereas transverse focusing leads

to oscillations about the axis at the betatron wavelength with a maximum displacement

of 0.45 cm, as is shown in Fig. 4. Similarly, the parallel energy -t1 (z) for a typical wiggler

realization is shown for a case without transverse focusing in Fig. 5 and for a case with

transverse focusing in Fig. 6. Figure 5 shows, in the 1-D limit, a 2.5% increase in the

parallel beam energy. This is in agreement with Eq. (15a) which indicates an increase

in the mean parallel energy provided a. > 2. Figure 6 shows a decrease in the parallel

energy of about 5%, which is in agreement with Eq. (15b) which indicates that transverse

focusing will lead to a decrease in the mean parallel energy. Notice also that the parallel

energy in Fig. 6 exhibits oscillations at 1/2 the betatron wzvelength. This reflects the fact

that -yjl depends on terms proportional to 61#L as indicated by Eq. (13).

The rms transverse displacement of the beam centroid (6z 2 (z)) 1 / 2 as obtained from

performing the ensemble average numerically is shown in Fig. 7 (solid curve), along with

the theoretical result (dashed curve), for the case without transverse focusing. The theory

and simulation are in good agreement showing a maximum rms displacement of about 5

cm. Figure 8 plots the rms beam centroid displacement for the case including transverse fo-

cusing, showing the comparison between the numerically obtained ensemble average (solid

curve) and the theoretical result (dashed curve). Both curves exhibit oscillations at. 1/2

the betatron wavelength and show a maximum rms displacement of about 0.25 cm.

18



The remaining plots describe the parallel energy ill of the electron beam. Tile nor-
nialized ensemble averaged energy (71l1)/-/lY, - I is shown in Figs. 9 and 10 for the cases
withbout and with transverse focusing, respectively, conmparitng the similation (so I ri,rv,)

and the analytical theory (dashed curve). Notice that in the absence of focusing Fig. 9
shows an increase (of about 1.3%) in the mean parallel energy whereas Fig. 10, which
includes focusing, shows a decrease (of about 3.5%) in the mean parallel energy. This

is in agreement with the theory for the case a,,, = 2. Similarly, the normalized variance
611 ((7 ) - ('I))11) 2) D/1 is shown in Figs. 11 and 12 for the cases without and with
transverse focusing, respectively, comparing the simulation (solid curve) and the analyti-
cal theory (dashed curve). In both Figs. 11 and 12 the -variance in the parallel energy is

quite large, becoming greater than 10% in less than 20 m.

These simulation results indicate that the analytical theory gives a good approxima-
tion to the qualitative and quantitative behavior of the electron beam. Several differences
which appear between the theory and the simulations may be attributed to the following

physical and iimerical effects. The electron beam in the simulation has a finite emittance
and beam cross-section. This results in a mean-square transverse position which is non-
zero initially. This is seen in Figs. 3, 4, 7 and 8. For cases in which weak focusing is
included, betatron oscillations occur in the beam motion. Since the simulations include
finite beam emittance, one expects the amplitude of these oscillations to be larger than
the predictions o; the analytic theory. This is the case in Figs. 8, 10 and 12. Also, the
amplitude of this oscillation in the simulations is not constant as the beam propagates .
This effect is due to the finite sampling size used in performing the ensemble average. In
principle, an infinite set of wigglers is needed in order to replicate the smooth functional de-
pendence of the theoretical ensemble average. For the ensemble average of variables whose
variance is large, the sampling size used must be large in order to recover the smooth func-
tional dependence. This is seen in the simulations shown in Figs. 9-12, in which various
statistical moments of the parallel beam energy are plotted. These ensemble averages were
performed over a set of 40 realizations, hence, these plots do not exhibit smooth behavior.
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VII. Discussion

The above analysis indicates that intrinsic magnetic field errors perturb electron beani
propagation through the wiggler and lead to various undesirable effects such as a random
walk of the electron beam centroid 3 6 as well as fluctuations in the parallel electron energy
of the beam.6 These detrimental effects were studied both analytically and numerically.
The analytical treatment assumed that the motion of the electron beam could be ade-
quately approximated by a single particle located at the beam centroid. Expressions were
derived for the centroid motion for a single wiggler realization (a particular.occurrence of
random errors 6B) as well as for averages taken ovet an ensemble of wigglers having the
same statistical properties. The field errors 6B were assumed to be random, homogeneous
functions of the propagation distance z with zero mean and with a finite variance. The
transverse dependence of SB was neglected assuming that the variation in 6B was small
over the transverse extent of the electron beam. Beam propagation was studied through
both helical and planar wiggler configurations, with and without transverse focusing. The
results of the analytical theory were then supported by performing 3-D particle simulations
of electron beam transport including the effects of finite emittance and space charge. The
results of these simulations showed good agreement with the analytic theory.

Physically, as the electrons propagated through the wiggler, they experienced ran-
dom v, x 6B forces which led to a random transverse walk of the beam centroid. In
the absence of transverse focousing, the rms value of the centroid displacement scale as

(&b2)2/2 ": z3/2, which is in agreement with the results of Kincaid'. More specifically,
the transverse displacement for a single wiggler realization is gi-'en by Eq. (10) and the
mean-square value averaged over the wiggler ensemble is given by Eq. (11). Transverse
focusing, however, impedes the random walk such that (6X2)1/2 _ Z1/ 2 in the large z limit,
(2kcz) 2 >> 1, which is in agreement with the results of Elliott and McVey 4 as well as
Shay and Scharlemann. s Expressions for a single realization and for the ensemble averaged
mean-square of the centroid displacement with transverse focusing are given by Eqs. (21)
and (24). In the limit (2koz) 2 >> 1, the rms centroid displacement can be written as

1 6B 2 /B )1 /2 (N/2) 1/2 , where N = z/,\, is the number of wiggler periods
the electron beam has traveled and where :z :_ A,,/2 has been assumed. For example,
(b6B 2 /B2)2 1 2 = 0.1% and N = 200 gives (bx 2 )1 /2 /Au. =: 10-2.

This random transverse motion of the beam centroid leads to variations in the parallel
beam energy" through conservation of energy. The above analysis indicates that both the

20



mean and the square of (he variance of the parallel energy variatiou scale linearly wil z.
with or without transverse focusing (i.e., transverse focusing does not significantly reduce

the parallrl energy deviation). The expression for the paxallel hnim energy for a single

wiggler realization is given by Eq. (13) along with the appropriate expressions for 6,3 (such

as Eq. (22) for the case of a helical wiggler with transverse focusing). Expressions for the

ensemble averages of the parallel energy are given by Eqs. (26) and (27) for the helical

case. In the limit (2k z)' >> 1, then the normalized variance of the parallel beam energy

-(('rl)- (y'1) 2 )11 /-v 1' can be written as 0ll :_ 7r(.B 2 /B2,)1 /2 .N112 , where a2, > > 1 has

been assumed. For example, (bB 2/B2) 1 /2 - 0.1% and N = 100 gives ,11 : 3 x 10- 2.

These effects may degrade FEL performance. Eor example, the random walk of the

electron beam centroid may become too large over a sufficiently short distance such that
the radiation beam is no longer optically guided.' When this occurs, the electron beam

centroid no longer overlaps the centroid of the radiation beam, thus leading to a loss of the

FEL interaction and loss of FEL gain. Ideally, it may be desirable to keep the magnitude of
the transverse beam displacement less than the beam rY.ius lbxl/rb < 1 in order to avoid

such detrimental effects. Alternatively, the parallel energy variation induced by the wiggler

field errors may become sufficiently large so as to destroy the FEL resonant interaction.

Statistically speaking, one can interpret the parallel energy variation due to field errors

as an effective energy spread which increases with increasing axial distance. As discussed

above, &11 - z' 2 and for rms random field errors of 0.1%, then after 100 wiggler periods

there exists an effective energy spread of &11 = 1.0%, which is a significant amount. In

order to avoid loss of the FEL resonance, it is necessary for the parallel energy spread to

be small compared to the intrinsic power efficiency 17 for FELs in the low gain or high

gain regimes,' &11 < 17. In the trapped particle regime, the parallel energy spread needs to

be small compared to the width of the FEL ponderomotive potential' 4's, which implies

&11 < jejI/(-rmoc2 ). For example, in the low gain regime -7 = 1/(2N) which implies that
the rms field errors must be less than (bB 2 /B2 )1 /2 < 1/(27rN3 /2 ), where the expression

for &I given in the previous paragraph has been used. For N = 100, this implies that in
the low gain regime (6B 2 /B 2) 1/ 2 < 2 x 10- 4, which may be difficult to achieve in practice.

In an actual wiggler magnet, however, the field errors 6B(z) are not entirely random

functions of :. In practice, once the field errors from each individual magnet pole have been

measured, one may be clever in how these poles are then arranged during the assembly

of the wiggler such that the detrimental effects of these field errors are minimized.'5 For

example, if the field error from a given pole pair tends to deflect the electron beam in a

given direction, then the next pole pair should be chosen such that it deflects the electron
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beani in the opposite direction so as to keep the beam as close to axis as possible. A typical

figure of merit used ai practice is the line integral of the field errors I f dz'6B(z' ) which is to
be minitnized dluring wiggler as-se-inly. If Ilhe nagiiit itde of the centrnid (I ,iplace111eii iq In

be minimized, however, then the above analysis indicates that. the pole arrangement should

be chosen to minimize the integral I f dz' sin kj3(:' - z)6B(:' )j, as is shown by Eq. (21). In

some FEL applications it may be the case that the reduction in gain resulting froin finite

field errors is dominated by the parallel energy deviation as opposed to the random walk of

the electron beam centroid. In such cases it may be desirable to arrange the magnet poles
such that the expression for the magnitude of the parallel energy deviation is minimized,

16 71l1 -=o 1 ,h where -11 is given by Eq. (13) along with the appropriate expressions for
6ij. Preliminary analysis by the authors suggests that if one wishes to maximize the FEL
gain, then the magnet poles should be arranged such that the magnitude of the deviation

in the relative phase of the electrons in the ponderomotive wave tbtkI is minimized, where

60 - f d:' 7 11- Notice that the centroid displacement scales as -x - f dz'6_L3± , whereas
the relative phase deviation 6Sb depends on terms of the form f dz'l±_6ob# and of the form

f dz'b5/3. Hence, minimization of 6z does not necessarily correspond to minimization of

of b.

External steering coils may also be used to reduce the detrimental effects of field
errors."- ' For example, steering coils may be used to periodically steer the electron beam

back on axis and thus prevent the beam centroid displacement from becoming too large.

Although the random walk of the centroid may be greatly reduced in this way, it is not clear
that this will also greatly reduce the parallel energy variation &yII or, more importantly, the

relative phase deviation 6if. Preliminary analysis by the authors indicates that if external

coils are used to steer the electron beam back on axis after a given distance 1, such that

6z(l) = 0, then the mean value of the relative phase deviation (6b(l)) is only reduced by
a factor of three, i.e., 1/3 times the value in the absence of external beam steering. A

more complete analysis of the effects of field errors on FEL gain, including the effects of
beam steering, is currently being pursued by the authors and will be the subject of future

publications.
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(solid curve) and from theory (dashed curve) for the case with transverse focusing ('y =
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from simulation (solid curve) and from theory (dashed curve) for the case without trans-

verse focusing (' = 270, a,. = 2, A,. = 5 cm and ( B2,)' 2 B17B. = 0.3%).
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